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Abstract. We propose and develop to some extent a novel approach, which allows to effectively describe,
for relativistic heavy-ion collisions, the empirically observed deviation from unity of the intercept λ (i.e.
the measured value corresponding to zero relative momentum p of two registered identical pions or kaons)
of the two-particle correlation function C(p,K). The approach is based on the use of two versions of the so-
called q-deformed oscillators and the corresponding picture of ideal gases of q-bosons. By these techniques
the intercept λ is put into direct correspondence with the deformation parameter q. For fixed deformation
strength, the model predicts particular dependence of the intercept λ on the pion pair mean momentum
K.

PACS. 25.75.-q Relativistic heavy-ion collisions

1 Introduction

The hadron matter under intense conditions of high tem-
peratures and densities has been extensively studied with
the use of relativistic heavy-ion collisions (RHIC). The
insight into the extreme matter with experimentally con-
trolled initial energies serves as an examination of existing
models and theories. On the other hand, RHIC promises
to be a laboratory where a search for new physics that
extends beyond current imaginations can be made.

The models and approaches that are used to describe
the processes occurring in the reaction region are exam-
ined by comparing provided predictions with experimen-
tal data on single-, two- and many-particle momentum
spectra, which contain information on the source at the
early stage (photons, dileptons) and at the stage of so-
called “freeze-out” (hadron spectra). Two-particle correla-
tions encapsulate information about the space-time struc-
ture and dynamics of the emitting source [1]- [3]. Usu-
ally, consideration of the correlations that occur in rela-
tivistic heavy ion-collisions assumes that: (i) the particles
are emitted independently (or the source is completely
chaotic), and (ii) finite multiplicity corrections can be ne-
glected. Then, correlations reflect a) the effects from sym-
metrization (antisymmetrization) of the amplitude to de-
tect identical particles with certain momenta, and b) the
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effects that are generated by the final state interactions
of the detected particles between themselves and with the
source. At first sight, the final state interactions (FSI) can
be regarded as a contamination of “pure” particle corre-
lations. However, it should be noted that the FSI depend
on the structure of the emitting source and thus provide
information about source dynamics as well [4]. Discussion
of the latter is beyond the scope of the present paper.

The nominal quantity expressing the correlation func-
tion in terms of experimental distributions [2] is

C(ka,kb) =
P2 (ka,kb)

P1 (ka) P1 (kb)
, (1)

where P1 (k) = E d3N/d3k and P2 (ka,kb) = EaEbd
6N/

(d3kad
3kb) are single- and two-particle cross-sections, ka

and kb being on-shell asymptotic momenta.
In the absence of FSI, for a chaotic source, the corre-

lation function can be expressed as (see Appendix):

C(p,K) =

1 + cosα

∣∣∫ d4X eip·XS(X,K)
∣∣2∫

d4X S
(
X,K + p

2

) ∫
d4Y S

(
Y,K − p

2

) , (2)

where 4-momenta K and p are defined as

K =
1
2

(ka + kb) , p = ka − kb . (3)

The source function S(x,K) (single-particle Wigner den-
sity) is defined in terms of emitted single-particle states
ψγ(t,x) at freeze-out times:
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S(Y,K) =
∫
d4y eiK·y

×
∑
γ,γ′

ργγ′ ψγ
(
Y + y

2

)
ψ∗γ′

(
Y − y

2

)
, (4)

where the summation (averaging) is taken over the set
of all quantum numbers {γ} carried by the particle just
before it is frozen out. The source freeze-out density ma-
trix ργγ′ is the weight factor of such an averaging and
depends on the particular model of source, for instance,
thermal density operator is widely exploited.

For the system of identical particles that we are going
to consider, the two-particle wave function appears to be
a symmetrized (antisymmetrized) combination of single-
particle states (chaoticity assumption), which reads

ψγaγb(xa,xb, ta) =
1√
2

[ψγa(xa, ta)ψγb(xb, ta)

+ eiαψγa(xb, ta)ψγb(xa, ta)
]
, (5)

where α = 0 for identical bosons, and α = π for identical
fermions. Note that the function (5) is taken at freeze-out
times (about translation from detector times t → ∞ to
emission times, see Appendix).

From now on we shall refer our consideration of two-
particle correlations to identical bosons (pions, kaons,
etc.). As follows from (2), the boson correlation function
should approach the exact value two as the relative mo-
mentum approaches zero. But as it was observed, from
the very first experimental data and up to the most re-
cent experiments, the measured correlation function never
reaches this value at p = 0. To remove this discrepancy,
the correlation function of identical bosons is always taken
in the form

C(p,K) = 1 + λ f(p,K) , (6)

where λ is drawn from an experimental fit to the data, usu-
ally in the range λ = 0.4 – 0.9; f(p,K) is commonly taken
as a Gaussian function (in any case, f(p = 0,K) = 1). The
deviation of λ from unity in RHIC is usually explained by
the production of secondary pions from resonance decays
which are outside the fireball. The presence of long-lived
resonances results in an increase of the measured source
size and life-times [5,6].

We are now coming to the key idea of our paper. Con-
fining ourselves to formula (2) in order to explain exper-
imental data, it is then straightforward to put into cor-
respondence the parameter λ with the angle α, so as to
get, by means of cosα, the right reduction factor λ. Ac-
tually, in (5) one can take the phase factor e−iα in place
of the factor eiα. However, by simple algebra the two-
particle amplitude (52) can be reduced to the form which
results in the same two-particle probability as the former
one. Indeed, the correlation function (2), which is a mea-
surable quantity, is obviously symmetric with respect to
α→ −α. It turns out that an effective symmetrization of a
two-particle wave function in heavy-ion collisions exhibits
similar features to what one encounters in the descrip-

tion of the Aharonov-Bohm effect, or in the physics of
anyons. This means that the two-particle wave function
of a boson pair released from a dense and hot environ-
ment effectively acquires an additional phase. Hence, the
drawn phenomenon can be ascribed to the properties of
the medium formed in RHIC, which, as we see, exhibits
some non-standard QFT behaviour through the consid-
ered correlation functions. So, adopting as a driving idea
the fact that the correlation function approaches 1 + λ
when the two-boson relative momentum approaches zero,
we will attempt to construct an effective model capable
to mimic the real physical picture. To perform this, we
shall use as our basic tool the so-called (algebra of) q-
deformed commutation relations, or techniques of q-boson
statistics, which certainly can be put in connection with
the symmetrization rules.

The deformation parameter q is viewed as an effec-
tive (not universal) parameter which efficiently encapsu-
lates most essential features of complicated dynamics of
the system under study. In many cases, usage of appro-
priate q-algebra allows one to reduce the treatment of
complex system of interacting particles to consideration
of a system of non-interacting ones at the price of com-
plication (deformation) of the commutation relations. As
an example let us mention the application of q-deformed
algebras to description of rotational spectra of superde-
formed nuclei [7] – here q has different value for each
nucleus.

It is worth noting that in the context of hadron theory,
q-deformed algebras (or quantum algebras) were also al-
ready applied. Such a usage proved to yield a significantly
improved description of hadron characteristics, both re-
garding hadron scattering [8] – [10] – nonlinearity of Regge
trajectories – and in the sector of such static properties as
hadron masses and mass sum rules [11,12].

In what follows, we shall exploit, for the system of
pions or kaons, the (ideal) q-Bose gas picture based on two
concrete versions of q-bosons. From the viewpoint of direct
physical meaning and/or explanation of the true origin of
the q-deformation in the considered phenomenon, these
versions differ from each other, first of all in the question
of whether q must be real or can also take such complex
values as a pure phase. Note that, at this stage, we do not
go into details concerning the diversity of other, than the
above-mentioned, “microscopical” reasons (certainly, not
completely unrelated) for the appearance of q-deformed
statistics. Suffice it to mention that the composite nature
of the particles (pseudoscalar mesons) under study may as
well result [13,14] in the q-deformed structures linked to
the real deformation parameter q.

2 The two versions of q-bosons

In this section we give a brief sketch of main features
of the two versions (type “A” and type “B”) of multi-
mode q-oscillators, which will be used in subsequent treat-
ment.
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Type A

The q-oscillators of this type are defined by means of the
relations [15]

[ai, aj ] = [a†i , a
†
j ] = 0, [Ni, aj ] = −δijaj ,

[Ni, a†j ] = δija
†
j , [Ni,Nj ] = 0,

aia
†
j − qδija

†
jai = δij . (7)

Note that, if i 6= j, this system of independent q-oscillators
differs essentially from quons [16] whose different modes
are non-commuting (i.e. q-commuting).

From the vacuum state given by ai|0, 0, . . .〉 = 0 for all
i, the state vectors

|n1, n2, . . . , ni, . . .〉 ≡ (8)
1√

[n1]![n2]! · · · [ni]! · · ·
(a†1)n1(a†2)n2 · · · (a†i )ni · · · |0, 0, . . .〉

are constructed as usual, so that

a†i |n1, . . . , ni, . . .〉 =
√

[ni + 1]|n1, . . . , ni + 1, . . .〉, (9)

ai|n1, . . . , ni, . . .〉 =
√

[ni]|n1, . . . , ni − 1, . . .〉, (10)

Ni|n1, . . . , ni, . . .〉 = ni|n1, . . . , ni, . . .〉. (11)

Here the bracketed notation

[r] ≡ 1− qr
1− q , along with (12)

[r]! ≡ [1][2] · · · [r − 1][r], [0]! = 1,

is used. The q-bracket [A] for an operator A is understood
as a formal expression (formal series). At q → 1, from [r]
and [A] we recover r and A, thus returning to the formulas
for the standard bosonic oscillator. In what follows it will
be assumed that

−1 ≤ q ≤ 1; (13)

for each such value of the deformation parameter q, the
operators a†i , ai are mutual conjugates.

In the generic case where q 6= 1, the bilinear a†iai does
not equal the number operator Ni (as this is true for usual
bosonic oscillators) but, instead,

a†iai = [Ni]. (14)

The inverse of the latter relation is given by the formula
[17]:

Ni =
∞∑
s=1

(1− q)s
1− qs (a†i )

sasi , (15)

expressing the number operator as a (formal) series of cre-
ation and annihilation operators.

Type B

The q-oscillators of the second type are defined through
the relations [18,19]:

[bi, bj ] = [b†i , b
†
j ] = 0, [Ni, bj ] = −δijbj ,

[Ni, b
†
j ] = δijb

†
j , [Ni, Nj ] = 0,

bib
†
j − qδij b

†
jbi = δijq

−Nj , bib
†
j − q−δij b

†
jbi = δijq

Nj . (16)

Again we have
b†i bi = [Ni] (17)

where the notation for the q-bracket this time means:

[r] =
qr − q−r
q − q−1

. (18)

Formulas completely analogous to (8)–(11) are valid also
for the operators bi, b

†
j if, instead of (12), we now use the

definition (18) for q-brackets. Clearly, the equality b†i bi =
Ni holds only in the “no-deformation” limit of q = 1. For
consistency of the conjugation, it is required that either q
is real or

q = exp(iθ), 0 ≤ θ < 2π. (19)

In what follows we will consider the type “A” as well
as the type “B” oscillators. For the type “B” oscillators
the exponent form (19) will be adopted (compare with the
symmetrization phase α in (5)).

3 Statistical q-distributions

For the dynamical multi-pion or multi-kaon system, we
consider the model of ideal gas of q-bosons (IQBG) taking
the free (non-interacting) Hamiltonian in the form [20,21]

H =
∑
i

ωiNi , (20)

where ωi =
√
m2 + k2

i , Ni is defined as above, and sub-
script i labels energy eigenvalues. It should be emphasized
that among a large variety of possible choices of Hamilto-
nians, this is the unique truly non-interacting one, which
possesses an additive spectrum. From now on, we assume
that 3-momenta of particles take their values from a dis-
crete set (i.e. the system is contained in a large finite box
of volume ∼ L3).

As usual, basic statistical properties are obtained by
evaluating thermal averages such as

〈A〉 =
Sp(Aρ)
Sp(ρ)

, ρ = e−βH ,

where β = 1/T and the Boltzmann constant is set equal to
1. The averaging here is taken with respect to the chosen
Hamiltonian (20).

It is an easy task to calculate the quantity 〈qNi〉 to
obtain

〈qNi〉 =
eβωi − 1
eβωi − q . (21)
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From this we find the distribution function (recall that q
belongs to the interval −1 ≤ q ≤ 1):

〈a†iai〉 =
1

eβωi − q . (22)

In the no-deformation limit q → 1, this reduces to the
Planck-Bose-Einstein distribution, as it should, since at
q = 1 we return to the standard system of bosonic com-
mutation relations.

At q = −1 and q = 0, the distributions we get coincide
respectively with Fermi-Dirac and Maxwell-Boltzmann
ones. It should be emphasized that this coincidence is
rather a formal one: the defining relations (7) at q = −1
or q = 0 differ from those for the system of fermions or the
non-quantal (classical) system. The formal coincidence of
(22) at q = −1 with a Fermi-Dirac distribution can be in-
terpreted [22] as due to the impenetrability (the hard-core
property) of such bosons. The difference with the system
of genuine fermions lies in commuting (versus fermionic
anticommuting) of non-coinciding modes at q = −1; see
(7).

Let us now turn to the type “B” q-bosons. The Hamil-
tonian is chosen again as that of IQBG with the number
operator defined in (16) and (17), i.e.,

H =
∑
i

ωiNi. (23)

Calculation of 〈q±Ni〉 yields

〈q±Ni〉 =
eβωi − 1
eβωi − q±1

. (24)

From the relation

〈b†i bi〉 =
1

eβωi − q 〈q
−Ni〉

or, equivalently, 〈b†i bi〉 = 〈a†iai〉BE〈qNi〉〈q−Ni〉, we obtain
the formula for the q-deformed distribution function (tak-
ing into account that q + q−1 = [2] = 2 cos θ):

〈b†i bi〉 =
eβωi − 1

e2βωi − 2 cos(θ)eβωi + 1
. (25)

Note that, although the deformation parameter q is cho-
sen in a particular complex form, see (19), the explicit
expression for the q-distribution function turns out to be
real, owing to its specific dependence on q through the
combination q + q−1.

The shape of the function f(k) ≡ 〈b†b〉(k) from (25)
corresponding to the gas of pions modelled by IQBG is
shown1 in Fig. 1 (curve II). For comparison, the stan-
dard Bose-Einstein distribution function (curve I) and
the classical Maxwell-Boltzmann one (curve III) are also

1 The (isotriplet-averaged) pion mass m(π±,0) =
139.57 MeV and the temperature T = 120 MeV are
taken as inputs. The deformation value, encoded in cos θ, is
fixed to be θ = 24◦.

Fig. 1. The q-distribution function (25) versus momentum
(curve II), in comparison with the quantum Bose-Einstein
(curve I) and classical Maxwell-Boltzmann (curve III) distri-
butions. The inputs are: T = 120 MeV, m = mπ; curve II
corresponds to the deformation angle θ = 24◦

presented in the same figure. As is clearly seen, the q-
deformed distribution function lies completely in between
the other two curves, thus demonstrating2 that the devi-
ation of the q-distribution (25) from the quantum Bose-
Einstein distribution goes in the “right direction”, towards
the classical Maxwell-Boltzmann one.

Analogous curves for q-distribution functions, with
similar properties, can be given for other fixed data. Let
us remark that, in the case of kaons, because of their
larger mass and higher empirical value of the intercept
λ ' 0.88 (which corresponds to the smaller deformation
in our model), such a curve should lie significantly closer
to that of the Bose-Einstein distribution.

It is worth noting that the q-distribution functions (22)
and (25) already appeared, in particular in the context
of thermal field theory, in [21]. We give them here for
completeness of exposition, since they are connected with
new results to be described in the next section.

4 Two-particle correlations of q-bosons

Let us now turn to the issue of two-particle correlations.
From the easily verifiable identity

a†jakala
†
i = qδik+δila†ia

†
jakal + [a†i , a

†
j ] akal

+ qδil [ak, a
†
i ]q a

†
jal + [al, a

†
i ]q a

†
jak ,

where [ai, a
†
j ]q ≡ aia

†
j − qδija

†
jai is q-deformed commuta-

tion relation (7), by taking thermal average and putting it
in correspondence with 〈a†jakala

†
i 〉 = eβωi〈a†ia

†
jakal〉 , we

find

〈a†ia
†
jakal〉=

eβωi−q
eβωi−qδik+δil

(
qδij〈a†iak〉〈a

†
jal〉+〈a

†
ial〉〈a

†
jak〉

)
.

2 The same is true also for the (apparently more simple) q-
distribution (22) of the type “A” q-bosons.



D.V. Anchishkin et al.: Two-particle correlations from the q-Boson viewpoint 233

Fig. 2. Intercept λ versus deformation parameter q, as given by
(28). The curves A, B, C and D correspond to the values wA =
0.1, wB = 0.35, wC = 0.8 and wD = 5.0 of the dimensionless
variable w ≡ βω

With coinciding modes3 , this leads to the formula

〈a†ia
†
iaiai〉 =

1 + q

(eβωi − q)(eβωi − q2)
. (26)

From the last relation and distribution (22), the ratio un-
der question follows:

λ̃i =
〈a†ia

†
iaiai〉

〈a†iai〉2
=

(1 + q)(eβωi − q)
eβωi − q2

. (27)

This constitutes one of our main results. For convenience,
let us set

λ̃ = 1 + λ with λ = q
eβω − 1
eβω − q2

. (28)

The quantity λ can be directly confronted with empirical
data. Note that in the non-deformed limit q → 1 the value
λBE = 1, proper for Bose-Einstein statistics, is correctly
reproduced from (28). This, obviously, corresponds to the
Bose-Einstein distribution contained in (22) if q → 1.

At q = −1, (22) and (28) formally coincide with the
Fermi-Dirac distribution and the value λFD = −1 proper
for the Fermi-Dirac statistics respectively, although the
defining relations are not exactly those of the fermionic
system (rather, the hard core bosons [22]). Finally, at
q = 0 we get λ = 0, which coincides with the analogous
fact for the case of purely classical description (complete
absence of quantum effects due to identical particles). The
three different cases are clearly seen in Fig. 2 as the only
three points where all the different curves (the contin-
uum parametrized by w = βω) merge and, thus, the de-
pendence on momentum and/or temperature disappears.
From the continuum of curves, there exists a unique lim-
iting (asymptotic) one λ̃ = 1 + q (or λ = q), which cor-
responds to the limit w → ∞ (i.e. to zero temperature

3 Recall that K ≡ 1
2
(ka+kb), p ≡ ka−kb; in the case p = 0,

K = ka = kb.

or infinite momentum). Conversely, for very large tem-
perature such that w → 0, the curve goes over into the
step-shaped function

λ̃ =

{ 0, q = −1,
1, −1 < q < 1,
2, q = 1,

with the constant λ = 0 for each fixed value of q except
for the endpoints q = 1 and q = −1.

We find now the formula describing two-particle cor-
relations (at identical momenta), which corresponds to
Biedenharn-Macfarlane q-oscillators, type “B”, see (16).
From the relation

〈b†i b
†
i bibi〉 − q2〈b†i bibib

†
i 〉 = −〈b†i biqNi〉(1 + q2) ,

which is valid for the case of coinciding modes (i.e. equal
momenta), we immediately get

〈b†i b
†
i bibi〉 =

1 + q2

q2eβωi − 1
〈b†i biqNi〉.

The thermal average in the r.h.s. can be easily evaluated
to yield 〈b†i biqNi〉 = q/(eβωi − q2). Taking this into ac-
count, we find the expression for two-particle distribution,
namely

〈b†i b
†
i bibi〉 =

2 cos θ
e2βωi − 2 cos(2θ)eβωi + 1

. (29)

From that, the desired formula for (the intercept of) two-
particle correlations finally results:

λ̃i ≡ λi + 1 =
〈b†i b

†
i bibi〉

(〈b†i bi〉)2
=

2 cos θ(ti + 1− cos θ)2

t2i + 2(1− cos2 θ)ti
, (30)

where ti = cosh(βωi) − 1. Note that both (29) and (30)
are real functions (as they should) since, like (25), they
both depend on the complex q-parameter (19) through
the combination 1

2 (q + q−1) = cos θ.
In the rest of this section, we extract some useful in-

formation contained in (30). Solving this equation with
respect to cos θ at a fixed value λ = λ̄, we obtain the
deformatin angle as the function: θ = θ(λ̄,K, T,m).

Figure 3 is used to illustrate main properties of the
intercept (correlation strength) λ treated from the stand-
point of q-deformation, that is, on the base of (30). First,
let us note that the continuum of curves λ̃ = λ̃(cos θ)
parametrized by w = βω divides into three different
classes (“subcontinua”) given by three intervals of the pa-
rameter: (i) 0 < w ≤ w0, (ii) w0 < w < w′0, and (iii) w′0 ≤
w < ∞. Here, the two “critical” values w0 = wB ' 0.481
and w′0 = wD ' 0.696 are singled out (curves B and D
respectively). The curves A, C, and E are typical represen-
tatives of the classes (i),(ii) and (iii). All the curves from
classes (i), (ii) possess two extrema, the minimum being
to the left of the maximum (the curve D is unique since
its extrema degenerate, coinciding with the point of inflec-
tion). This fact enables us to define naturally “the range of
small deformations” – the interval Ismall for the variable θ:
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Fig. 3. Intercept λ versus deformation given
by cos θ, see (30). The curves A,B,C,D and
E correspond to the values wA = 0.3, wB =
0.481, wC = 0.58, wD = 0.696and wE = 2.0 of
the dimensionless variable w ≡ βω

from θ = 0 (no deformation) to the value yielding minimal
λ, λmin ≈ 0.33, implied by the “critical” value w0 = wD.
It is seen that on the interval Ismall the intercept λ mono-
tonically decreases with increasing of θ (or 1− cos θ), the
strength of deformation. On the contrary, each curve from
the third class is monotonic as a whole and, thus, there
is no criterion (no peculiar point), which would naturally
separate “small” deformations from “large” ones.

In this paper we deal only with classes (ii) and (iii)
since all their curves at θ 6= 0 lie below the straight line
λ̃ = 2 – the largest possible correlation attainable in the
Bose-Einstein case (note that curve B contains, besides
θ = 0, just a single point at a certain value of 1 − cos θ,
where the value λ̃ = 2 is also attained). Moreover, for
the (ii)-type curves, we restrict ourselves to Ismall, ignor-
ing “moderately large” deformations (between min. and
max.), for which the behaviour of λ = λ(θ) is opposite to
that for Ismall, as well as very large ones (to the right of the
maximum). Unlike these two regular classes, the class (i)
consists of “irregular” curves: for each such curve there
exist q-deformations that generate correlation strengths
exceeding the maximal possible one λ̃ = 2. Therefore, we
discard the class (i), at least at this stage.

Finally, let us discuss special values of the physi-
cal variables T, |K|, which provide the peculiar values
w0 = wB ' 0.481 and w′0 = wD ' 0.696 (recall that
w =

√
m2 + K2/T ). With m(π±,0) = 139.57 MeV and

lowest mean momentum of the pion pair fixed to be
|K| = 0, we get two limiting (from below) values for the
temperature: T0 = 290.0 MeV and T ′0 = 200.5 MeV. It is
interesting to compare these data with that for the typi-
cal curve from class (iii). Namely, at w = wE = 2.0 (the
curve E) for pions of this same lowest momentum we get
the limiting (from below) value of temperature TE = 69.8
MeV.

5 Discussion and outlook

The main purpose of theoretical approaches to RHIC is
to find an adequate description for the non-equilibrium

state formed during the collision. On this way, the q-boson
techniques enables us to treat the non-stationary hot and
dense matter effectively as a “noninteracting ideal gas”.
To deal with q-bosons, it is necessary to determine the
q-parameter that corresponds to the actual state of the
hot medium. We propose a way of extracting from the
two-particle correlations a useful information concerning
q, and develop an effective picture of the two-pion (-kaon)
spectra in RHIC. According to our results, the measured
deviation from unity of the intercept λ is interpreted as
the manifestation of q-boson properties of the pion system
created in RHIC.

From (28) and (30), one can express the quantities
encoding the deformation as: q = q(λ,K, T,m) and θ =
θ(λ,K, T,m). In the characteristic limits of temperature
and momentum, our model exhibits a remarkable feature,
valid for both types of exploited q-oscillators:
• For very low temperature at fixed momenta, or very

large momenta at fixed temperature (i.e. at w →∞, com-
pare with curve D in Fig. 2 and curve E in Fig. 3), we
come to the equality

q = λ (T → 0 or |K| → ∞) (31)

for the type “A” oscillators, and to the equality

2 cos θ = λ+ 1 (T → 0 or |K| → ∞) (32)

for the type “B” oscillators. This implies the unified di-
rect connection λ ↔ q, namely λ̃ = [2], for both types
“A” and “B”.

On the other hand, finite temperature and momenta
become non-trivially involved (especially in the case of
type “B” q-bosons) in the relation between λ and the de-
formation parameter q, see (28), (30) as well as Figs. 2, 3.
• Equation (30) implies dependence of the intercept λ

on the pair mean momentum K for fixed values of the
deformation angle θ, temperature and particle mass, since
λ = λ(θ,K, T,m). In Fig. 4, we present this dependence
exemplifying it, for T = 120 MeV and m = mπ, with four
curves which correspond to the values 4◦, 9◦, 15◦ and 24◦
of the deformation angle θ. Each curve tends to its own
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Fig. 4. Dependence of the intercept λ on the
pion pair mean momentum |K| for fixed values
of θ. The temperature is taken to be T = 120
MeV; m = mπ

asymptote given by (32). The apparent specific variability
of λ with varying |K| (for a fixed deformation) is one of
the consequences of our model, and can be viewed both
as an interesting prediction and as a check-point for this
approach.

In [16], it was argued that the quon-based description
applied to pions participating in the decay KL → π+π−,
can give a complete account of this process (instead of
CP -violation, as commonly accepted cause). Moreover,
this sets a bound on the “strength” of the deformation,
namely 1 − q ≤ 10−6. On the contrary, within the pro-
posed approach to multiparticle correlations (as occurred
in the HBT interferometry) based on viewing the identical
pions as q-bosons, the two-pion correlations imply the em-
ployment of significantly more developed (strength of) q-
deformation. Namely, in our implementation of the q-Bose
gas picture, the empirical data are interpreted as corre-
sponding to the strength ' 0.2−− 0.6 of q-deformation.

The approach proposed in this paper, we hope, opens
interesting new perspectives for further research in this
direction. Three-particle correlations as well as fermion-
fermion(-fermion) ones are the topics to be studied next
using the developed “q-techniques”.
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Appendix

In the appendix we consider the two-particle quantum sta-
tistical correlations when the final state interactions of the
detected particles are neglected. This phenomenon is visu-
alized most transparently on the basis of standard quan-
tum mechanics in the non-relativistic case. Meanwhile, us-
ing the presented scheme, the relativistic picture can also

be considered. Moreover, this approach allows us to take
into consideration the final state interactions as well [4].

The probability to register two particles, with definite
asymptotic momenta pa and pb, which are created in the
relativistic heavy-ion collisions is usually compared with
the probability to register two particles of the same mo-
mentum independently. For that reason, we begin by con-
sidering the single-particle spectrum.

A.1. Single-particle cross section

Let us consider the single-particle state ψγ of a particle
emitted by the source. Its propagation to the detector is
governed by the Schrödinger equation

i
∂ψγ(x, t)

∂t
= ĥ(x)ψγ(x, t) , where

ĥ(x) = − 1
2m
∇2 . (33)

The index γ denotes a complete set of 1-particle quantum
numbers. (In a basis of wave packets, these could contain
the centers X of the wave packets of the particles at their
freeze-out times t.) Equation (33) is solved by

ψγ(x, t, t0) = e−iĥ(x)(t−t0) ψγ(x, t0) , (34)

in terms of the single-particle wave function at some ini-
tial time t0. We will assume that the detector measures
asymptotic momentum eigenstates, i.e. that it acts by pro-
jecting the emitted 1-particle state onto

φout
p (x, t) = ei(p·x−ω(p)t), (35)

where ω(p) = p2/2m is the energy of the particle. The
measured single-particle momentum amplitude is then

Aγ(p, t0) = lim
t→∞

∫
d3xφout,∗

p (x, t)ψγ(x, t, t0) . (36)
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Using the time evolution equation (34), this can be ex-
pressed in terms of the emitted single-particle wave func-
tion ψγ at earlier times as

Aγ(p, t0) = lim
t→∞

∫
d3x

[
e−iĥ(x)(t0−t) φout

p (x, t)
]∗
ψγ(x, t0)

=
∫
d3x eiω(p) t0−ip·x ψγ(x, t0) . (37)

This expression means that the momentum amplitude, as
it should be, is an on-shell Fourier transformation of the
emitted wave at emission times. It is worth noting that this
is not the case when, after emission, a particle is subject
to final state interactions.

The single-particle probability is obtained by averag-
ing (37) and its complex conjugate using the density ma-
trix defining the source. This density matrix is character-
ized by a probability distribution for the single-particle
quantum numbers γ. We write

P1(p) =
〈∣∣Aγ(p, t0)

∣∣2〉
γ

=
∑
γγ′

∫
dt0 dt

′
0 ργ,γ′ Aγ′ (p, t

′
0) A∗γ (p, t0) , (38)

where the anglular brackets mean averaging over source
quantum numbers γ; the overline means averaging over
emission times and is detailed in the r.h.s. Inserting (37)
into (38) yields

P1(p) =
∫
d4x d4x′eip·(x−x

′)
∑
γ,γ′

ργγ′ψγ(x)ψ∗γ′(x
′), (39)

where p = (ω(p),p). Let us introduce new time and posi-
tion space variables

Y =
1
2

(x+ x′), y = x− x′. (40)

We now define the single particle Wigner density S(X,K)
of the source as

S(Y,K) =
∫
d4y eiK·y

∑
γ,γ′

ργγ′ψγ
(
Y + y

2

)
ψ∗γ′

(
Y − y

2

)
.

(41)
Using the hermiticity of the source density matrix ργγ′ it
is easily shown that S(Y,K) is real. Thus, we come to the
expression for the single-particle spectrum, which employs
the source function:

P1(p) =
∫
d4xS(x, p) (42)

where the integration goes over emission times.

A.2. Two-particle quantum statistical correla-
tions without final state interactions

Let us consider a two-particle state ψγ emitted by the
source. Its propagation to the detector is governed by the

Schrödinger equation

i
∂ψγ(xa,xb, t)

∂t
= Ĥ(xa,xb)ψγ(xa,xb, t) , (43)

where Ĥ(xa,xb) = ĥ(xa) + ĥ(xb). The index γ denotes a
complete set of 2-particle quantum numbers. (In a basis
of products of two wave packets these could contain the
centers Xa, Xb of the wave packets of the two particles at
their freeze-out times ta, tb, respectively.) Equation (43)
is solved by

ψγ(xa,xb, t) = e−iĤ(xa,xb)(t−t0) ψγ(xa,xb, t0) (44)

in terms of the two-particle wave function at some initial
time t0. We will assume that the detector measures asymp-
totic momentum eigenstates, i.e. that it acts by projecting
the emitted 2-particle state onto

φout
pa,pb

(xa,xb, t) = ei(pa·xa−ωat) ei(pb·xb−ωbt) , (45)

where ωa,b = p2
a,b/2m

2. We will only consider the case of
pairs of identical particles, ma = mb = m. The measured
two-particle momentum amplitude is then

Aγ(pa,pb) =

lim
t→∞

∫
d3xa d

3xb φ
out,∗
pa,pb

(xa,xb, t)ψγ(xa,xb, t) . (46)

If we consider identical particles, then the two-particle
wave function ψγ(xa,xb, t) should be symmetrized (an-
tisymmetrized). Writing this explicitly, we obtain

Aγ(pa,pb) = lim
t→∞

1√
2

∫
d3xa d

3xb φ
out,∗
pa,pb

(xa,xb, t)

×
[
ψγ(xa,xb, t) + eiα ψγ(xb,xa, t)

]
, (47)

where α = 0 (α = π) for identical bosons (fermions).
Relabelling the variables of integration in the second term
on the r.h.s. of this equation as xa → xb and xb → xa, we
come to the expression:

Aγ(pa,pb) = lim
t→∞

1√
2

∫
d3xa d

3xb

×
[
ei(pa·xa−ωat) ei(pb·xb−ωbt)

+ eiα ei(pa·xb−ωat) ei(pb·xa−ωbt)
]∗
ψγ(xa,xb, t) . (48)

This simple algebra results in the evident conclusion that
it does not matter which wave function should be sym-
metrized (antisymmetrized) at asymptotic time t: two-
particle wave function ψγ(xa,xb, t) or out-state wave func-
tion. We show below that the same holds for emission
times.

Using the evolution operator (see (44)), (46) can be
expressed in terms of the two-particle wave function ψγ
emitted at earlier times as

Aγ(pa,pb) = lim
t→∞

∫
d3xa d

3xb

×
[
e−iĤ(xa,xb)(t0−t)φout

pa,pb
(xa,xb, t)

]∗
ψγ(xa,xb, t0). (49)
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This is correct for all times t0 ≥ max [ta, tb], where ta,b are
the freeze-out times for the two particles. Note that the
time evolution operator has been shifted (by Hermitian
inversion of the unitary evolution operator) from the emit-
ted two-particle state with arbitrary quantum numbers γ
to the two-particle momentum eigenstate φout

pa,pb
(xa,xb, t)

which is thereby transformed into a plane wave at time t0.
It should be pointed out that such an evolution of the out-
state from t =∞ to t = t0 if one includes the two-particle
interaction into the Hamiltonian Ĥ(xa,xb), would bring
a distorted wave at time t0 instead of the plane one [4].

We assume that the two particles are emitted inde-
pendently, implying that, at some freeze-out time ta, the
two-particle wave function ψγ(xa,xb, t) factorizes

ψγ(xa,xb, ta) =
1√
2

[ψγa(xa, ta)ψγb(xb, ta)

+ eiαψγa(xb, ta)ψγb(xa, ta)
]
, (50)

The indices γa, γb of the 1-particle wave functions now la-
bel complete sets of 1-particle quantum numbers. Time
ta is the emission time of the latest emitted particle. At
this time the first emitted particle of the pair has al-
ready propagated for a time ta − tb if it was emitted at
tb < ta. During this time the first emitted particle can-
not “see” the second particle as a separate entity, but
only as part of the remaining fireball. That is why the
two-particle symmetrization (antisymmetrization) can be
effectively extracted from many-particle symmetrization
(antisymmetrization) after emission of the second parti-
cle. In other words a factorization of the two-particle wave
function from the many-particle wave function, which cor-
responds to the total system, is possible only when the
second emitted particle is frozen out from the fireball.
This means that we adopt concept of the two-particle am-
plitude factorization. All these considerations complicate
when we start with the two-particle Hamiltonian that con-
tains terms where the coordinates are entangled, for in-
stance the two-particle potential energy V (xa−xb); but a
discussion of this point is beyond the scope of the present
letter (see [4] for details).

Owing to the particle-particle emission symmetry and
to the commutation of the free evolution operators, we can
write the measured two-particle momentum amplitude as

Aγa,γb(pa,pb, ta, tb)= lim
t→∞

1√
2

∫
d3xad

3xbφ
out,∗
pa,pb

(xa,xb, t)

×
[
e−i[ĥ(xa)(t−ta)+ĥ(xb)(t−tb)] ψγa(xa, ta)ψγb(xb, tb) +

+eiαe−i[ĥ(xb)(t−ta)+ĥ(xa)(t−tb)]ψγa(xb, ta)ψγb(xa, tb)
]
. (51)

Now, we first relabel the variables of integration in the
second term on the r.h.s. of this equation, what results
in symmetrization (antisymmetrization) of the out-state.
Secondly, we invert the evolution operator, which there-
fore acts on the out-state and brings it from asymptotic
time t to initial times ta and tb. As a result, we come to
the final expression of the two-particle amplitude:

Aγa,γb(pa,pb, x
0
a, x

0
b) =

1√
2

∫
d3xad

3xb[
ei(pa·xa+pb·xb) + e−iαei(pa·xb+pb·xa)

]
ψγa(xa)ψγb(xb),

(52)

where x0
a = taandx0

b = tb. We therefore represent the mea-
sured two-particle momentum amplitude as a projection
of a non-symmetrized two-particle wave function taken at
emission times onto symmetrized (antisymmetrized) plane
waves taken at emission times as well.

The two-particle probability is obtained by averaging
(52) and its complex conjugate with the density matrix
defining the source. This density matrix is characterized
by a probability distribution for the two-particle quantum
numbers (γa, γb) and by a distribution of emission times
(ta, tb). We write:

P2(pa,pb) =
〈∣∣Aγa,γb(pa,pb; ta, tb)∣∣2〉

γa,γb

=
∑

γaγb,γa′γb′

∫
dtadtbdta′dtb′ργaγa′ργbγb′

×Aγa′γb′ (pa,pb; ta′ , tb′)A∗γaγb(pa,pb; ta, tb),
(53)

where anglular brackets on the r.h.s. of this equation mean
averaging over the quantum numbers γa, γb and the over-
line means averaging over the initial (emitting) times. We
made the ansatz ργaγb,γa′γb′ = ργaγa′ ργbγb′ , which factor-
izes the initial density matrix ργaγb,γa′γb′ in such a way
that independent emission of the two particles is ensured.

According to (52), the probability consists of four
terms, which we write as

P2(pa,pb) = P11 + P22 + P12 + P21 , (54)

which have the structure (a1 + a2)(a1 + a2)∗ = a1a
∗
1 +

a2a
∗
2 + a1a

∗
2 + a2a

∗
1. First diagonal term reads

P11(pa, pb) =
1
2

∫
d4xa d

4ya e
i(pa·xa−pa·ya)

〈
ψγa(xa)ψ∗γa(ya)

〉
γa

×
∫
d4xb d

4yb e
i(pb·xb−pb·yb)

〈
ψγb(xb)ψ

∗
γb

(yb)
〉
γb
. (55)

We introduce the new momentum variables K and p as

K =
1
2

(pa + pb), p = pa − pb ⇒ pa = K +
p

2
,

pb = K − p

2
. (56)

Using these variables and the space-time variables (40),
P11 can be rewritten in the form

P11(p,K) =
1
2

∫
d4X

∫
d4xeı(K+ 1

2p)·x
〈
ψγa

(
X +

x

2

)
ψ∗γa

(
X − x

2

)〉
γa

×
∫
d4Y

∫
d4yeı(K−

1
2p)·y

〈
ψγb

(
Y +

y

2

)
ψ∗γb

(
Y − y

2

)〉
γb
.

(57)
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In the integrals over the variables x and y, we immedi-
ately recognize the freeze-out Wigner density (41). But
before rewriting this term let us note that P22 can be ob-
tained from P11 by a mutual change of momenta pa ⇀↽ pb,
which in turn results in changing p to −p. Hence, to ob-
tain P22 from P11 we need only to change the sign before p.
Performing such a change, we come to an equality of the
diagonal terms P11(p,K) = P22(p,K). Putting together
these two terms, we obtain

P11(p,K) + P22(p,K) =∫
d4XS

(
X,K +

p

2

)∫
d4Y S

(
Y,K − p

2

)
, (58)

i.e. the product of two single-particle probabilities (see
(42)) to registrate independently two particles with
asymptotic momenta pa = K + p/2 and pb = K − p/2,
respectively.

We now turn to considering of the cross term P12 =
a1a
∗
2, which is a complex conjugate to the second cross-

contribution P21 = a∗1a2, hence their sum is real. We have

P12(pa, pb) =
1
2
eiα

∫
d4xa d

4ya e
i(pa·xa−pb·ya)

〈
ψγa(xa)ψ∗γa(ya)

〉
γa

×
∫
d4xb d

4yb e
i(pb·xb−pa·yb)

〈
ψγb(xb)ψ

∗
γb

(yb)
〉
γb
. (59)

By the same change of variables as for diagonal terms, the
exponents in the integrand can be rewritten as: (pa · xa −
pb ·ya) = (p·X+K ·x) and (pb ·xb−pa ·yb) = (−p·Y +K ·y).
Using the definition of the source function (41), we obtain:

P12(p,K) =
1
2
eiα
∫
d4Xeip·XS(X,K)

∫
d4Y e−ip·Y S(Y,K). (60)

The second cross term P21, which is complex conjugate
to P12, is proportional to the exponent exp (−iα), but the
remaining factor is real. Hence, the sum of two cross terms
looks like P12 + P21 = 1

2Ae
iα + 1

2Ae
−iα = A cosα, where

A is real. We are now ready to write the total expression
for the two-particle probability

P2(p,K) =∫
d4XS

(
X,K +

p

2

)∫
d4Y S

(
Y,K − p

2

)
+ cosα

∫
d4Xeip·XS(X,K)

∫
d4Y e−ip·Y S(Y,K), (61)

and we finally get the two-particle correlator as

C(p,K) =

1 + cosα

∣∣∫ d4Xeip·XS(X,K)
∣∣2∫

d4XS
(
X,K + p

2

) ∫
d4Y S

(
Y,K − p

2

) , (62)

where the source function S(X,K) is defined in accor-
dance with (41) and all integrations are taken at emission
times or on the freeze-out hyper-surface.
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